WASTELOAD ANALYSIS [WLA] **Addendum: Statement of Basis** SUMMARY Discharging Facility: Richmond WWTP UPDES No: UT-0020907 Current Flow: 0.36 MGD Current flow is intermittent. This value represents an average flow over the 0.50 MGD Design Flow Receiving Water: **Cub River** Stream Classification: 2B, 3B, 4 20th Percentile value used for all seasons Stream Flows [cfs]: 32.6 Summer (July-Sept) 20th Percentile 32.6 Fall (Oct-Dec) 32.6 Winter (Jan-Mar) 20th Percentile 20th Percentile 32.6 Spring (Apr-June) 120.3 Average 338.4 Summer (July-Sept) 80th Percentile value used for all seasons Stream TDS Values: 80th Percentile 338.4 Fall (Oct-Dec) 338.4 Winter (Jan-Mar) 80th Percentile 80th Percentile 338.4 Spring (Apr-June) WQ Standard: **Effluent Limits: Design Flow** Flow, MGD: 0.50 MGD BOD, mg/l: 25.0 Summer 5.0 Indicator 5.5 30 Day Average Dissolved Oxygen, mg/l 5.0 Summer Varies Function of pH and Temperature 52.6 Summer TNH3, Chronic, mg/l: TDS, mg/l: 37513.1 Summer 1200.0 **Modeling Parameters:** Acute River Width: 50.0% Chronic River Width: 100.0% Antidegradation level I complete, Level II antidegradation review NOT required. Date: 7/2/2013 Permit Writer: WLA by: WQM Sec. Approval: TMDL Sec. Approval: WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis 2-Jul-13 4:00 PM UPDES No: UT-0020907 Facilities: Richmond WWTP Discharging to: **Cub River** #### I. Introduction Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen. Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc). The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality. #### II. Receiving Water and Stream Classification Cub River: 2B, 3B, 4 Antidegradation Review: Level II Review NOT required ### III. Numeric Stream Standards for Protection of Aquatic Wildlife Total Ammonia (TNH3) Varies as a function of Temperature and pH Rebound. See Water Quality Standards Chronic Total Residual Chlorine (TRC) 0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average) Chronic Dissolved Oxygen (DO) 5.50 mg/l (30 Day Average) 4.00 mg/l (7Day Average) 3.00 mg/l (1 Day Average Maximum Total Dissolved Solids 1200.0 mg/l ### Acute and Chronic Heavy Metals (Dissolved) | | 4 Day Average (Chron | ic) Standard | 1 Hour Average (Acute) Standard | | | |--------------|----------------------|---------------|---------------------------------|------|----------------| | Parameter | Concentration | Load* | Concentration | | Load* | | Aluminum | 87.00 ug/l** | 0.363 lbs/day | 750.00 | ug/l | 3.127 lbs/day | | Arsenic | 190.00 ug/l | 0.792 lbs/day | 340.00 | ug/l | 1.418 lbs/day | | Cadmium | 0.61 ug/l | 0.003 lbs/day | 6.52 | ug/l | 0.027 lbs/day | | Chromium III | 211.92 ug/l | 0.884 lbs/day | 4433.71 | ug/l | 18.485 lbs/day | | ChromiumVI | 11.00 ug/l | 0.046 lbs/day | 16.00 | ug/l | 0.067 lbs/day | | Copper | 23.85 ug/l | 0.099 lbs/day | 39.41 | ug/l | 0.164 lbs/day | | lron | | • | 1000.00 | ug/l | 4.169 lbs/day | | Lead | 12.88 ug/l | 0.054 lbs/day | 330.60 | ug/l | 1.378 lbs/day | | Mercury | 0.0120 ug/l | 0.000 lbs/day | 2.40 | ug/l | 0.010 lbs/day | | Nickel | 132.13 ug/l | 0.551 lbs/day | 1188.44 | ug/l | 4.955 lbs/day | | Selenium | 4.60 ug/l | 0.019 lbs/day | 20.00 | ug/l | 0.083 lbs/day | | Silver | N/A ug/l | N/A lbs/day | 25.04 | ug/l | 0.104 lbs/day | | Zinc | 303.93 ug/l | 1.267 lbs/day | 303.93 | ug/l | 1.267 lbs/day | | * Allov | ved below discharge | | | | | ^{**}Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3 Metals Standards Based upon a Hardness of 300 mg/l as CaCO3 | | Orga | ınics | [Pes | tici | desl | |--|------|-------|------|------|------| |--|------|-------|------|------|------| | 4 Day Average (Chronic) Standard | | | 1 Hour Average (Acute) Standard | | | | |----------------------------------|---------------|------------------|---------------------------------|------|---------------|--| | Parameter | Concentration | Load* | Concentration | | Load* | | | Aldrin | | | 1.500 | ug/l | 0.006 lbs/day | | | Chlordane | 0.004 ug/l | 0.773 lbs/day | 1.200 | ug/l | 0.005 lbs/day | | | DDT, DDE | 0.001 ug/l | 0.180 lbs/day | 0.550 | ug/l | 0.002 lbs/day | | | Dieldrin | 0.002 ug/l | 0.342 lbs/day | 1.250 | ug/l | 0.005 lbs/day | | | Endosulfan | 0.056 ug/l | 10.073 lbs/day | 0.110 | ug/l | 0.000 lbs/day | | | Endrin | 0.002 ug/l | 0.414 lbs/day | 0.090 | ug/l | 0.000 lbs/day | | | Guthion | | | 0.010 | ug/l | 0.000 lbs/day | | | Heptachlor | 0.004 ug/l | 0.684 lbs/day | 0.260 | ug/l | 0.001 lbs/day | | | Lindane | 0.080 ug/l | 14.391 lbs/day | 1.000 | ug/l | 0.004 lbs/day | | | Methoxychlor | | | 0.030 | ug/l | 0.000 lbs/day | | | Mirex | | | 0.010 | ug/l | 0.000 lbs/day | | | Parathion | | | 0.040 | ug/l | 0.000 lbs/day | | | PCB's | 0.014 ug/l | 2.518 lbs/day | 2.000 | ug/l | 0.008 lbs/day | | | Pentachlorophenol | 13.00 ug/l | 2338.481 lbs/day | 20.000 | ug/l | 0.083 lbs/day | | | Toxephene | 0.0002 ug/l | 0.036 lbs/day | 0.7300 | ug/l | 0.003 lbs/day | | | IV. Numeric Stream Standards for Protection of Agriculture | |--| | 4 Day Average (Chronic) Standard | | 4 | Day Average (Chronic |) Standard | 1 Hour Average (Acute) Standard | | | |----------|----------------------|------------|---------------------------------|--------------|--| | | Concentration | Load* | Concentration | Load* | | | Arsenic | | | 100.0 ug/l | lbs/day | | | Boron - | | | 750.0 ug/l | lbs/day | | | Cadmium | | | 10.0 ug/l | 0.02 lbs/day | | | Chromium | | | 100.0 ug/l | lbs/day | | | Copper | 200.0 ug/l | lbs/day | |-------------|-------------|---------------| | Lead | 100.0 ug/l | lbs/day | | Selenium | 50.0 ug/l | lbs/day | | TDS, Summer | 1200.0 mg/l | 2.50 tons/day | ### V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters) | 4 | Day Average (Chronic) | Standard | 1 Hour Average (Ac | ute) Standard | |------------------------|-----------------------|----------|--------------------|---------------| | Metals | Concentration | Load* | Concentration | Load* | | Arsenic | | | ug/l | lbs/day | | Barium | | | ug/l | lbs/day | | Cadmium | | | ug/l | lbs/day | | Chromium | | | ug/l | lbs/day | | Lead | | | ug/l | lbs/day | | Mercury | | | ug/l | lbs/day | | Selenium | | | ug/l | lbs/day | | Silver | | | ug/l | lbs/day | | Fluoride (3) | | | ug/l | lbs/day | | to | | | ug/l | lbs/day | | Nitrates as N | | | ug/l | lbs/day | | - 6 | | | | | | Chlorophenoxy Herbicio | des | | | | | 2,4-D | | | ug/l | lbs/day | | 2,4,5-TP | | | ug/l | lbs/day | | Endrin | | | ug/l | lbs/day | | ocyclohexane (Lindane) | | | ug/l | lbs/day | | Methoxychlor | | | ug/l | lbs/day | | Toxaphene | | | ug/l | lbs/day | ### VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics] ### Maximum Conc., ug/l - Acute Standards | | Class 1C | | (| Class | 3A, 3B | |--------------------------|-------------------------|---------------------|---------|--------|------------------------| | Toxic Organics | [2 Liters/Day for 70 Kg | Person over 70 Yr.] | [6.5 g | for 70 | Kg Person over 70 Yr.] | | Acenaphthene | ug/l | lbs/day | 2700.0 | ug/l | 485.68 lbs/day | | Acrolein | ug/l | lbs/day | 780.0 | _ | 140.31 lbs/day | | Acrylonitrile | ug/l | lbs/day | 0.7 | ug/l | 0.12 lbs/day | | Benzene | ug/l | lbs/day | 71.0 | _ | 12.77 lbs/day | | Benzidine | ug/l | lbs/day | | ug/l | 0.00 lbs/day | | Carbon tetrachloride | ug/l | lbs/day | 4.4 | ug/l | 0.79 lbs/day | | Chlorobenzene | ug/l | lbs/day | 21000.0 | ug/l | 3777.55 lbs/day | | 1,2,4-Trichlorobenzene | | | | | | | Hexachlorobenzene | ug/l | lbs/day | 0.0 | ug/l | 0.00 lbs/day | | 1,2-Dichloroethane | ug/l | lbs/day | 99.0 | ug/l | 17.81 lbs/day | | 1,1,1-Trichloroethane | | | | | | | Hexachloroethane | ug/l | lbs/day | 8.9 | ug/l | 1.60 lbs/day | | 1,1-Dichloroethane | | | | | | | 1,1,2-Trichloroethane | ug/l | lbs/day | 42.0 | ug/l | 7.56 lbs/day | | 1,1,2,2-Tetrachloroethau | ug/l | lbs/day | 11.0 | ug/l | 1.98 lbs/day | | Chloroethane | | | 0.0 | ug/l | 0.00 lbs/day | | Bis(2-chloroethyl) ether | ug/l | lbs/day | 1.4 | ug/l | 0.25 lbs/day | | O Oblaca albed sized albert | | lla a / al au . | 0.0 | | 0.00 lba/day | |-----------------------------|-------|-----------------|----------|------|------------------| | 2-Chloroethyl vinyl ether | ug/l | lbs/day | | ug/l | 0.00 lbs/day | | 2-Chloronaphthalene | ug/l | lbs/day | 4300.0 | ug/l | 773.50 lbs/day | | 2,4,6-Trichlorophenol | ug/l | lbs/day | 6.5 | ug/l | 1.17 lbs/day | | p-Chloro-m-cresol | | No a falance | 0.0 | ug/l | 0.00 lbs/day | | Chloroform (HM) | ug/l | lbs/day | 470.0 | ug/l | 84.55 lbs/day | | 2-Chlorophenol | ug/l | lbs/day | 400.0 | ug/l | 71.95 lbs/day | | 1,2-Dichlorobenzene | ug/l | lbs/day | 17000.0 | ug/l | 3058.01 lbs/day | | 1,3-Dichlorobenzene | ug/l | lbs/day | 2600.0 | ug/l | 467.70 lbs/day | | 1,4-Dichlorobenzene | ug/l | lbs/day | 2600.0 | ug/l | 467.70 lbs/day | | 3,3'-Dichlorobenzidine | ug/l | lbs/day | 0.1 | ug/l | 0.01 lbs/day | | 1,1-Dichloroethylene | ug/l | lbs/day | | ug/l | 0.58 lbs/day | | 1,2-trans-Dichloroethyle | ug/l | lbs/day | | ug/l | 0.00 lbs/day | | 2,4-Dichlorophenol | ug/l | lbs/day | 790.0 | _ | 142.11 lbs/day | | 1,2-Dichloropropane | ug/l | lbs/day | 39.0 | _ | | | 1,3-Dichloropropylene | ug/l | lbs/day | 1700.0 | ug/i | 305.80 lbs/day | | 2,4-Dimethylphenol | ug/l | lbs/day | 2300.0 | ug/l | 413.73 lbs/day | | 2,4-Dinitrotoluene | ug/l | lbs/day | 9.1 | ug/l | 1.64 lbs/day | | 2,6-Dinitrotoluene | ug/l | lbs/day | 0,0 | ug/l | 0.00 lbs/day | | 1,2-Diphenylhydrazine | ug/l | lbs/day | 0.5 | ug/l | 0.10 lbs/day | | Ethylbenzene | ug/l | lbs/day | 29000.0 | ug/l | 5216.61 lbs/day | | Fluoranthene | ug/l | lbs/day | 370.0 | ug/l | 66.56 lbs/day | | 4-Chlorophenyl phenyl ether | | | | | | | 4-Bromophenyl phenyl ether | | | | | | | Bis(2-chloroisopropyl) e | ug/l | lbs/day | 170000.0 | ug/l | 30580.14 lbs/day | | Bis(2-chloroethoxy) met | ug/l | lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Methylene chloride (HM | ug/l | lbs/day | 1600.0 | ug/l | 287.81 lbs/day | | Methyl chloride (HM) | ug/l | lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Methyl bromide (HM) | ug/l | lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Bromoform (HM) | ug/l | lbs/day | 360.0 | ug/l | 64.76 lbs/day | | Dichlorobromomethane | ug/l | lbs/day | 22.0 | ug/l | 3.96 lbs/day | | Chlorodibromomethane | ug/l | lbs/day | 34.0 | - | 6.12 lbs/day | | Hexachlorobutadiene(c) | ug/l | lbs/day | 50.0 | - | 8.99 lbs/day | | Hexachlorocyclopentadi | ug/l | lbs/day | 17000.0 | - | 3058.01 lbs/day | | Isophorone | ug/l | lbs/day | 600.0 | | 107.93 lbs/day | | Naphthalene | ug/i | | 000.0 | ug,. | | | Nitrobenzene | ug/l | lbs/day | 1900.0 | ua/l | 341.78 lbs/day | | 2-Nitrophenol | ug/l | lbs/day | | ug/l | 0.00 lbs/day | | 4-Nitrophenol | ug/l | lbs/day | | ug/l | 0.00 lbs/day | | 2,4-Dinitrophenol | ug/l | lbs/day | 14000.0 | | 2518.36 lbs/day | | 4,6-Dinitro-o-cresol | ug/l | lbs/day | 765.0 | | 137.61 lbs/day | | N-Nitrosodimethylamine | ug/l | lbs/day | 8.1 | - | 1.46 lbs/day | | N-Nitrosodiphenylamine | ug/l | lbs/day | | ug/l | 2.88 lbs/day | | N-Nitrosodi-n-propylami | ug/l | lbs/day | | ug/l | 0.25 lbs/day | | Pentachlorophenol | ug/l | lbs/day | | ug/l | 1.48 lbs/day | | Phenol | ug/l | lbs/day | 4.6E+06 | • | 8.27E+05 lbs/day | | Bis(2-ethylhexyl)phthala | ug/l | lbs/day | | ug/l | 1.06 lbs/day | | | - | lbs/day | 5200.0 | • | 935.39 lbs/day | | Butyl benzyl phthalate | ug/l | lbs/day | 12000.0 | _ | 2158.60 lbs/day | | Di-n-butyl phthalate | ug/l | ibarday | 12000.0 | ug/i | 2156.00 ibs/day | | Di-n-octyl phthlate | 14-11 | lho/day | 120000 0 | ua/I | 21505 00 lba/day | | Diethyl phthalate | ug/l | lbs/day | 120000.0 | _ | 21585.98 lbs/day | | Dimethyl phthlate | ug/l | lbs/day | 2.9E+06 | ug/i | 5.22E+05 lbs/day | | | | | | | | | Benzo(a)anthracene (P/Benzo(a)pyrene (PAH) Benzo(b)fluoranthene (FBenzo(k)fluoranthene (FCBnzeno (PAH) | ug/l
ug/l
ug/l
ug/l
ug/l | | lbs/day
lbs/day
lbs/day
lbs/day
lbs/day | 0.0
0.0
0.0 | ug/l
ug/l
ug/l
ug/l
ug/l | 0.01 lbs/day
0.01 lbs/day
0.01 lbs/day
0.01 lbs/day
0.01 lbs/day | |--|--------------------------------------|----|---|---|--------------------------------------|---| | Chrysene (PAH) Acenaphthylene (PAH) Anthracene (PAH) Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene | ug/l
ug/l
ug/l | | lbs/day
lbs/day
lbs/day | | ug/l | 0.00 lbs/day
0.01 lbs/day
0.01 lbs/day | | Pyrene (PAH) Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride | ug/l
ug/l
ug/l
ug/l
ug/l | | lbs/day
lbs/day
lbs/day
lbs/day
lbs/day | 11000.0
8.9
200000.0
81.0
525.0 | ug/l
ug/l
ug/l | 1978.71 lbs/day
1.60 lbs/day
35976.63 lbs/day
14.57 lbs/day
94.44 lbs/day | | Pesticides | | | | | | lbs/day
lbs/day | | Aldrin Dieldrin Chlordane | ug/l
ug/l
ug/l | | lbs/day
lbs/day
lbs/day
lbs/day | 0.0
0.0
0.0
0.0 | ug/l | 0.00 lbs/day
0.00 lbs/day
0.00 lbs/day
0.00 lbs/day | | 4,4'-DDT
4,4'-DDE
4,4'-DDD
alpha-Endosulfan | ug/l
ug/l
ug/l
ug/l | 20 | lbs/day
lbs/day
lbs/day | 0.0
0.0
0.0
2.0 | ug/l
ug/l | 0.00 lbs/day
0.00 lbs/day
0.00 lbs/day
0.36 lbs/day | | beta-Endosulfan
Endosulfan sulfate
Endrin | ug/l
ug/l
ug/l | B | lbs/day
lbs/day
lbs/day | 2.0
2.0
0.8 | ug/l
ug/l
ug/l | 0.36 lbs/day
0.36 lbs/day
0.15 lbs/day | | Endrin aldehyde
Heptachlor
Heptachlor epoxide | ug/l
ug/l | | lbs/day
lbs/day | 0.8 | ug/l
ug/l | 0.15 lbs/day
0.00 lbs/day | | PCB's | | | lh a ld a v | 0.0 | um/l | 0.00 lbc/dov | | PCB 1242 (Arochlor 124
PCB-1254 (Arochlor 124
PCB-1221 (Arochlor 122 | ug/l
ug/l
ug/l | | lbs/day
lbs/day
lbs/day | 0.0
0.0 | ug/l | 0.00 lbs/day
0.00 lbs/day
0.00 lbs/day | | PCB-1232 (Arochlor 124
PCB-1248 (Arochlor 124
PCB-1260 (Arochlor 126 | ug/l
ug/l
ug/l | | lbs/day
lbs/day
lbs/day | | ug/l
ug/l | 0.00 lbs/day
0.00 lbs/day
0.00 lbs/day | | PCB-1016 (Arochlor 10° Pesticide | ug/l | | lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Toxaphene | ug/l | | | 0.0 | ug/l | 0.00 lbs/day | | Dioxin
Dioxin (2,3,7,8-TCDD) | ug/l | | lbs/day | | | | | Metals
Antimony | ug/l | 15 | lbs/day | | | | | Arsenic
Asbestos
Beryllium | ug/l
ug/l | | lbs/day
lbs/day | 4300.00 | 0 ug/l | 773.50 lbs/day | | Cadmium
Chromium (III) | | | | | | | |---------------------------|---|------|---------|--------------|----------|---------| | Chromium (VI) | | | | | | | | Copper | | | | | | | | Cyanide | u | ıg/l | lbs/day | 2.2E+05 ug/l | 39574.30 | lbs/day | | Lead | u | ıg/l | lbs/day | | | | | Mercury | | | | 0.15 ug/l | 0.03 | lbs/day | | Nickel | | | | 4600.00 ug/l | 827.46 | lbs/day | | Selenium | u | ıg/l | lbs/day | | | | | Silver | u | ıg/l | lbs/day | | | | | Thallium | | | | 6.30 ug/l | 1.13 | lbs/day | | Zinc | | | | | | | There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis. ### VII. Mathematical Modeling of Stream Quality Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible. The modeling approach used in this analysis included one or a combination of the following models. - (1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA). - (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992. - (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8 - (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644. Coefficients used in the model were based, in part, upon the following references: - (1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985. - (2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644. #### VIII. Modeling Information The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions: Flow, Q, (cfs or MGD) D.O. mg/l Temperature, Deg. C. Total Residual Chlorine (TRC), mg/l рΗ Total NH3-N, mg/l BOD5, mg/l Total Dissolved Solids (TDS), mg/l Metals, ug/l Toxic Organics of Concern, ug/l #### **Other Conditions** In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement. #### **Model Inputs** The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge. ### Current Upstream Information | | Stream
Critical | | | | | | | | |------------------------|--------------------|--------|--------|-----------|--------|--------|-------|---------| | | Low Flow | Temp. | рН | T-NH3 | BOD5 | DO | TRC | TDS | | | cfs | Deg. C | | mg/l as N | mg/l | mg/l | mg/l | mg/l | | Summer (Irrig. Season) | 32.6 | 20.0 | 8.2 | 0.10 | 0.50 | 6.86 | 0.00 | 338.4 | | Fall | 32.6 | 12.0 | 8.1 | -0.10 | 0.50 | *** | 0.00 | 338.4 | | Winter | 32.6 | 4.0 | 8.0 | 0.10 | 0.50 | minus. | 0.00 | 338.4 | | Spring | 32.6 | 12.0 | 8.1 | 0.10 | 0.50 | *** | 0.00 | 338.4 | | Dissolved | Al | As | Cd | CrIII | CrVI | Copper | Fe | , Pb | | Metals | ug/l | All Seasons | 1.59* | 0.53* | 0.053* | 0.53* | 2.65* | 0.53* | 0.83* | 0.53* | | Dissolved | Hg | Ni | Se | Ag | Zn | Boron | | | | Metals | - | ug/l | ug/l | ug/l | ug/l | -ug/l | | | | All Seasons | _ | 0.53* | 1.06* | 0.1* | 0.053* | 10.0 | * | 1/2 MDL | #### **Projected Discharge Information** | Season | Flow, MGD | Temp. | TDS
mg/l | TDS
tons/day | |--------|-----------|-------|-------------|-----------------| | Summer | 0.50000 | 17.0 | 400.00 | 0.83383 | | Fall | 0.50000 | 15.0 | | | | Winter | 0.50000 | 12.0 | | | | Spring | 0.50000 | 15.0 | | | All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality. #### IX. Effluent Limitations Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9). Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows. #### Effluent Limitation for Flow based upon Water Quality Standards In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows: | Season | Daily Average | | |--------|---------------|-----------| | Summer | 0.500 MGD | 0.774 cfs | | Fall | 0.500 MGD | 0.774 cfs | | Winter | 0.500 MGD | 0.774 cfs | | Spring | 0.500 MGD | 0.774 cfs | #### Flow Requirement or Loading Requirement The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.5 MGD. If the discharger is allowed to have a flow greater than 0.5 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limititation as indicated above; or, include loading effluent limits in the permit. #### Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy Effluent Toxicity will not occur in downstream segements if the values below are met. | WET Requirements | LC50 > | 15.8% Effluent | [Acute] | |------------------|--------|----------------|-----------| | | IC25 > | 2.3% Effluent | [Chronic] | ## Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows: | Season | Concentration | | |--------|-------------------|---------------| | Summer | 25.0 mg/l as BOD5 | 104.2 lbs/day | | Fall | 25.0 mg/l as BOD5 | 104.2 lbs/day | | Winter | 25.0 mg/l as BOD5 | 104.2 lbs/day | | Spring | 25.0 mg/l as BOD5 | 104.2 lbs/day | Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows: | Season | Concentration | |--------|---------------| | Summer | 5.00 | | Fall | 5.00 | | Winter | 5.00 | | Spring | 5.00 | ### Effluent Limitation for Total Ammonia based upon Water Quality Standards In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows: | Sea | son | | | | | |--------|-------------------|-------|-----------|-------|---------| | | Load | 1 | | | | | Summer | 4 Day Avg Chronic | 52.6 | mg/l as N | 219.3 | lbs/day | | | 1 Hour Avg Acute | 97.8 | mg/l as N | 407.7 | lbs/day | | Fall | 4 Day Avg Chronic | 88.5 | mg/l as N | 368.8 | lbs/day | | | 1 Hour Avg Acute | 109.6 | mg/l as N | 457.1 | lbs/day | | Winter | 4 Day Avg Chronic | 101.7 | mg/l as N | 423.9 | lbs/day | | | 1 Hour Avg Acute | 128.3 | mg/l as N | 534.7 | lbs/day | | Spring | 4 Day Avg Chronic | 88.5 | mg/l as N | 0.0 | lbs/day | | | 1 Hour Avg Acute | 109.6 | mg/l as N | 0.0 | lbs/day | Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 50.%. ### Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows: | Season | | Concentr | ation | Loa | Load | | | |--------|-------------------|----------|-------|------|---------|--|--| | Summer | 4 Day Avg Chronic | 0.475 | mg/l | 1.98 | lbs/day | | | | | 1 Hour Avg Acute | 0.419 | mg/l | 1.75 | lbs/day | | | | Fall | 4 Day Avg Chronic | 0.475 | mg/l | 1.98 | lbs/day | | | | | 1 Hour Avg Acute | 0.419 | mg/l | 1.75 | lbs/day | | | | Winter | 4 Day Avg Chronic | 0.475 | mg/l | 1.98 | lbs/day | | | | | 1 Hour Avg Acute | 0.419 | mg/l | 1.75 | lbs/day | | | | Spring | 4 Day Avg Chronic | 0.475 | mg/l | 0.00 | lbs/day | | | | | 1 Hour Avg Acute | 0.419 | mg/l | 0.00 | lbs/day | | | Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards | Sea | son | Concentra | tion | Load | ı | |------------------------------------|---|--|------------------------------|----------------------------------|--| | Summer
Fall
Winter
Spring | Maximum, Acute
Maximum, Acute
Maximum, Acute
4 Day Avg Chronic | 37513.1
37513.1
37513.1
37513.1 | mg/l
mg/l
mg/l
mg/l | 78.20
78.20
78.20
78.20 | tons/day
tons/day
tons/day
tons/day | | Colorado | Salinity Form Limits | Determined | by Permitting | g Section | | ## Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 300 mg/l): | | | 4 Day Average | | | 1 Hou | r Average | | |--------------|----------|---------------|------|---------|---------------|-----------|-------------------------------| | | Conce | ntration | Lo | ad | Concentration | n | Load | | Aluminum | N/A | | N/A | | 16,504.5 | ug/l | 68.8 lbs/day | | Arsenic | 8,164.25 | ug/l | 22.0 | lbs/day | 7,488.1 | ug/l | 31.2 lbs/day | | Cadmium | 23.00 | ug/l | 0.1 | lbs/day | 142.2 | ug/l | 0.6 lbs/day | | Chromium III | 9,109.88 | ug/l | 24.6 | lbs/day | 97,848.7 | ug/l | 407.9 lbs/day | | Chromium VI | 307.08 | ug/l | 0.8 | lbs/day | 269.4 | ug/l | 1.1 lbs/day | | Copper | 995.63 | _ | 2.7 | lbs/day | 853.2 | ug/l | 3.6 lbs/day | | Iron | N/A | J | N/A | _ | 22,046.7 | ug/l | 91.9 lbs/day | | Lead | 522.35 | ug/l | 1.4 | lbs/day | 7,280.6 | ug/l | 30.4 lbs/day | | Mercury | 0.52 | ug/l | 0.0 | lbs/day | 53.0 | ug/l | 0.2 lbs/day | | Nickel | 5,667.45 | ug/l | 15.3 | lbs/day | 26,215.7 | ug/l | 109.3 lbs/day | | Selenium | 131.46 | ug/l | 0.4 | lbs/day | 408.0 | ug/l | 1.7 lbs/day | | Silver | N/A | ug/l | N/A | lbs/day | 552.7 | ug/l | 2.3 lbs/day | | Zinc | ######## | ug/l | 35.3 | lbs/day | 6,707.1 | ug/l | 28.0 lbs/day | | Cyanide | 224.36 | ug/l | 0.6 | lbs/day | 485.6 | ug/l | 2.0 lbs/day | ## Effluent Limitations for Heat/Temperature based upon Water Quality Standards | Summer | 64.1 Deg. C. | 147.5 Deg. F. | |--------|--------------|---------------| | Fall | 56.1 Deg. C. | 133.1 Deg. F | | Winter | 48.1 Deg. C. | 118.7 Deg. F | | Spring | 56.1 Deg. C. | 133.1 Deg. F | ## Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows: | | 4 Day Average | | 1 Hour A | | | |-------------------|---------------|------------------|---------------|------|------------------| | | Concentration | Load | Concentration | | Load | | Aldrin | | | 1.5E+00 | ug/l | 9.67E-03 lbs/day | | Chlordane | 4.30E-03 ug/l | 1.79E-02 lbs/day | 1.2E+00 | ug/l | 7.74E-03 lbs/day | | DDT, DDE | 1.00E-03 ug/l | 4.17E-03 lbs/day | 5.5E-01 | ug/l | 3.55E-03 lbs/day | | Dieldrin | 1.90E-03 ug/l | 7.92E-03 lbs/day | 1.3E+00 | ug/l | 8.06E-03 lbs/day | | Endosulfan | 5.60E-02 ug/l | 2.33E-01 lbs/day | 1.1E-01 | ug/l | 7.09E-04 lbs/day | | Endrin | 2.30E-03 ug/l | 9.59E-03 lbs/day | 9.0E-02 | ug/l | 5.80E-04 lbs/day | | Guthion | 0.00E+00 ug/l | 0.00E+00 lbs/day | 1.0E-02 | ug/l | 6.45E-05 lbs/day | | Heptachlor | 3.80E-03 ug/l | 1.58E-02 lbs/day | 2.6E-01 | ug/l | 1.68E-03 lbs/day | | Lindane | 8.00E-02 ug/l | 3.34E-01 lbs/day | 1.0E+00 | ug/l | 6.45E-03 lbs/day | | Methoxychlor | 0.00E+00 ug/l | 0.00E+00 lbs/day | 3.0E-02 | ug/l | 1.93E-04 lbs/day | | Mirex | 0.00E+00 ug/l | 0.00E+00 lbs/day | 1.0E-02 | ug/l | 6.45E-05 lbs/day | | Parathion | 0.00E+00 ug/l | 0.00E+00 lbs/day | 4.0E-02 | ug/l | 2.58E-04 lbs/day | | PCB's | 1.40E-02 ug/l | 5.84E-02 lbs/day | 2.0E+00 | ug/l | 1.29E-02 lbs/day | | Pentachlorophenol | 1.30E+01 ug/l | 5.42E+01 lbs/day | 2.0E+01 | ug/l | 1.29E-01 lbs/day | | Toxephene | 2.00E-04 ug/l | 8.34E-04 lbs/day | 7.3E-01 | ug/l | 4.71E-03 lbs/day | ### Effluent Targets for Pollution Indicators Based upon Water Quality Standards In-stream indicator criteria of downstream segments for Pollution Indicators would be met by achieving the following effluent targets | | 1 Hou | 1 Hour Average | | | |------------------------|---------------|----------------|--|--| | | Concentration | Loading | | | | Gross Beta (pCi/l) | 50.0 pCi/L | | | | | BOD (mg/l) | 5.0 mg/l | 20.8 lbs/day | | | | Nitrates as N | 4.0 mg/l | 16.7 lbs/day | | | | Total Phosphorus as P | 0.05 mg/l | 0.2 lbs/day | | | | Total Suspended Solids | 90.0 mg/l | 375.2 lbs/day | | | Note: Pollution indicator targets are for information purposes only. ### Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.) In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows: | | Maximum Concentration | | | | |----------------|-----------------------|---------------|------------------|--| | | Concentration | | Load | | | Toxic Organics | | | | | | Acenaphthene | | 1.16E+05 ug/l | 4.86E+02 lbs/day | | | Acrolein | | 3.37E+04 ug/l | 1.40E+02 lbs/day | | | Acrylonitrile | | 2.85E+01 ug/l | 1.19E-01 lbs/day | | | Benzene | | 3.06E+03 ug/l | 1.28E+01 lbs/day | | | Benzidine | ug/l | lbs/day | |------------------------------|----------------------|---------------------| | Carbon tetrachloride | 1.90E+02 ug/l | 7.91E-01 lbs/day | | Chlorobenzene | 9.06E+05 ug/l | 3.78E+03 lbs/day | | 1,2,4-Trichlorobenzene | | | | Hexachlorobenzene | 3.32E-02 ug/l | 1.39E-04 lbs/day | | 1,2-Dichloroethane | 4.27E+03 ug/l | 1.78E+01 lbs/day | | 1,1,1-Trichloroethane | | | | Hexachloroethane | 3.84E+02 ug/l | 1.60E+00 lbs/day | | 1,1-Dichloroethane | | | | 1,1,2-Trichloroethane | 1.81E+03 ug/l | 7.56E+00 lbs/day | | 1,1,2,2-Tetrachloroethane | 4.75E+02 ug/l | 1.98E+00 lbs/day | | Chloroethane | | | | Bis(2-chloroethyl) ether | 6.04E+01 ug/l | 2.52E-01 lbs/day | | 2-Chloroethyl vinyl ether | | | | 2-Chloronaphthalene | 1.86E+05 ug/l | 7.73E+02 lbs/day | | 2,4,6-Trichlorophenol | 2.80E+02 ug/l | 1.17E+00 lbs/day | | p-Chloro-m-cresol | | | | Chloroform (HM) | 2.03E+04 ug/l | 8.45E+01 lbs/day | | 2-Chlorophenol | 1.73E+04 ug/l | 7.20E+01 lbs/day | | 1,2-Dichlorobenzene | 7.33E+05 ug/l | 3.06E+03 lbs/day | | 1,3-Dichlorobenzene | 1.12E+05 ug/l | 4.68E+02 lbs/day | | 1,4-Dichlorobenzene | 1.12E+05 ug/l | 4.68E+02 lbs/day | | 3,3'-Dichlorobenzidine | 3.32E+00 ug/l | 1.39E-02 lbs/day | | 1,1-Dichloroethylene | 1.38E+02 ug/l | 5.76E-01 lbs/day | | 1,2-trans-Dichloroethylene1 | , and the second | · | | 2,4-Dichlorophenol | 3.41E+04 ug/l | 1.42E+02 lbs/day | | 1,2-Dichloropropane | 1.68E+03 ug/l | 7.02E+00 lbs/day | | 1,3-Dichloropropylene | 7.33E+04 ug/l | 3.06E+02 lbs/day | | 2,4-Dimethylphenol | 9.92E+04 ug/l | 4.14E+02 lbs/day | | 2,4-Dinitrotoluene | 3.93E+02 ug/l | 1.64E+00 lbs/day | | 2,6-Dinitrotoluene | oloon on ag. | 11012 00 100102, | | 1,2-Diphenylhydrazine | 2.33E+01 ug/l | 9.71E-02 lbs/day | | Ethylbenzene | 1.25E+06 ug/l | 5.22E+03 lbs/day | | Fluoranthene | 1.60E+04 ug/l | 6.66E+01 lbs/day | | 4-Chlorophenyl phenyl ether | | 3.332 37 1.33.43. | | 4-Bromophenyl phenyl ether | | | | Bis(2-chloroisopropyl) ether | 7.33E+06 ug/l | 3.06E+04 lbs/day | | Bis(2-chloroethoxy) methane | g | , | | Methylene chloride (HM) | 6.90E+04 ug/l | 2.88E+02 lbs/day | | Methyl chloride (HM) | 3.33 <u>—</u> 3.3 ag | | | Methyl bromide (HM) | | | | Bromoform (HM) | 1.55E+04 ug/l | 6.48E+01 lbs/day | | Dichlorobromomethane(HM) | 9.49E+02 ug/l | 3.96E+00 lbs/day | | Chlorodibromomethane (HM) | 1.47E+03 ug/l | 6.12E+00 lbs/day | | Hexachlorocyclopentadiene | 7.33E+05 ug/l | 3.06E+03 lbs/day | | Isophorone | 2.59E+04 ug/l | 1.08E+02 lbs/day | | Naphthalene | 2.002 · 0 / dg// | | | Nitrobenzene | 8.20E+04 ug/l | 3.42E+02 lbs/day | | 2-Nitrophenol | o.zoz or ugn | 5. 122 · 52 155/3dy | | 4-Nitrophenol | | | | 2,4-Dinitrophenol | 6.04E+05 ug/l | 2.52E+03 lbs/day | | E, T Dillicophenoi | o.o.i.e. oo ugn | E.022 - 00 100/00y | | 4,6-Dinitro-o-cresol N-Nitrosodimethylamine N-Nitrosodiphenylamine N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Di-n-butyl phthalate Di-n-octyl phthlate | 3.30E+04 ug/l
3.49E+02 ug/l
6.90E+02 ug/l
6.04E+01 ug/l
3.54E+02 ug/l
1.98E+08 ug/l
2.55E+02 ug/l
2.24E+05 ug/l
5.18E+05 ug/l | 1.38E+02 lbs/day
1.46E+00 lbs/day
2.88E+00 lbs/day
2.52E-01 lbs/day
1.48E+00 lbs/day
8.27E+05 lbs/day
1.06E+00 lbs/day
9.35E+02 lbs/day
2.16E+03 lbs/day | |--|---|--| | Diethyl phthalate | 5.18E+06 ug/l | 2.16E+04 lbs/day | | Dimethyl phthlate | 1.25E+08 ug/l | 5.22E+05 lbs/day | | Benzo(a)anthracene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Benzo(a)pyrene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Benzo(b)fluoranthene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Benzo(k)fluoranthene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Chrysene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Acenaphthylene (PAH) | | | | Anthracene (PAH) | | | | Dibenzo(a,h)anthracene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Indeno(1,2,3-cd)pyrene (PAH) | 1.34E+00 ug/l | 5.58E-03 lbs/day | | Pyrene (PAH) | 4.75E+05 ug/l | 1.98E+03 lbs/day | | Tetrachloroethylene | 3.84E+02 ug/l | 1.60E+00 lbs/day | | Toluene | 8.63E+06 ug/l | 3.60E+04 lbs/day | | Trichloroethylene | 3.49E+03 ug/l | 1.46E+01 lbs/day | | Vinyl chloride | 2.27E+04 ug/l | 9.44E+01 lbs/day | | Pesticides | | | | Aldrin | 6.04E-03 ug/l | 2.52E-05 lbs/day | | Dieldrin | 6.04E-03 ug/l | 2.52E-05 lbs/day | | Chlordane | 2.55E-02 ug/l | 1.06E-04 lbs/day | | 4,4'-DDT | 2.55E-02 ug/l | 1.06E-04 lbs/day | | 4,4'-DDE | 2.55E-02 ug/l | 1.06E-04 lbs/day | | 4,4'-DDD | 3.62E-02 ug/l | 1.51E-04 lbs/day | | alpha-Endosulfan | 8.63E+01 ug/l | 3.60E-01 lbs/day | | beta-Endosulfan | 8.63E+01 ug/l | 3.60E-01 lbs/day | | Endosulfan sulfate | 8.63E+01 ug/l | 3.60E-01 lbs/day | | Endrin | 3.49E+01 ug/l | 1.46E-01 lbs/day | | Endrin aldehyde | 3.49E+01 ug/l | 1.46E-01 lbs/day | | Heptachlor | 9.06E-03 ug/l | 3.78E-05 lbs/day | | Heptachlor epoxide | | | | | | | | PCB's | 4.045.00 !! | 0.000.00 / | | PCB 1242 (Arochlor 1242) | 1.94E-03 ug/l | 8.09E-06 lbs/day | | PCB-1254 (Arochlor 1254) | 1.94E-03 ug/l | 8.09E-06 lbs/day
8.09E-06 lbs/day | | PCB-1221 (Arochlor 1221) | 1.94E-03 ug/l | 8.09E-06 lbs/day | | PCB-1232 (Arochlor 1232) | 1.94E-03 ug/l
1.94E-03 ug/l | 8.09E-06 lbs/day | | PCB-1248 (Arochlor 1248) | _ | 8.09E-06 lbs/day | | PCB-1260 (Arochlor 1260)
PCB-1016 (Arochlor 1016) | 1.94E-03 ug/l
1.94E-03 ug/l | 8.09E-06 lbs/day | | FCD-1010 (Alochiol 1010) | 1.04L-00 ug/l | 0,00E-00 100/day | | | | | | Pesticide | | | |-----------------------|---------------|------------------| | Toxaphene | 3.24E-02 ug/l | 1.35E-04 lbs/day | | Metals | | | | Antimony | ug/l | lbs/day | | Arsenic | ug/l | lbs/day | | Asbestos | ug/l | lbs/day | | Beryllium | | | | Cadmium | | | | Chromium (III) | | | | Chromium (VI) | | | | Copper | ug/l | lbs/day | | Cyanide | ug/l | lbs/day | | Lead | | | | Mercury | ug/l | lbs/day | | Nickel | ug/l | lbs/day | | Selenium | • | | | Silver | | | | Thallium | ug/l | lbs/day | | Zinc | · · | • | | | | | | Dioxin | | 7 | | Dioxin (2,3,7,8-TCDD) | 6.04E-07 ug/l | 2.52E-09 lbs/day | ### Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule | | Class 4
Acute
Agricultur
al
ug/l | Class 3
Acute
Aquatic
Wildlife
ug/l | Acute
Toxics
Drinking
Water
Source
ug/l | Acute
Toxics
Wildlife
ug/I | 1C Acute
Health
Criteria
ug/l | Acute
Most
Stringent
ug/l | Class 3
Chronic
Aquatic
Wildlife
ug/l | |----------------|--|---|--|-------------------------------------|--|------------------------------------|---| | Aluminum | | 16504.5 | | | | 16504.5 | N/A | | Antimony | | | | 185528.2 | | 185528.2 | | | Arsenic | 4314.6 | 7488.1 | | | 0.0 | 4314.6 | 8164.3 | | Barium | | | | | | 0.0 | | | Beryllium | | | | | | 0.0 | | | Cadmium | 428.1 | 142.2 | | | 0.0 | 142.2 | -23.0 | | Chromium (III) | | 97848.7 | | | 0.0 | 97848.7 | 9109.9 | | Chromium (VI) | 4281.1 | 269.4 | | | 0.0 | 269.40 | 307.08 | | Copper | 8595.7 | 853.2 | | | | 853.2 | 995.6 | | Cyanide | | 485.6 | 9492139.6 | | | 485.6 | 224.4 | | Iron | | 22046.7 | | | | 22046.7 | | | Lead | 4281.1 | 7280.6 | | | 0.0 | 4281.1 | 522.3 | | Mercury | | 52.98 | | 6.47 | 0.0 | 6.47 | 0.518 | | Nickel | | 26215.7 | | 198472.0 | | 26215.7 | 5667.4 | | Selenium | 2090.3 | 408.0 | | | 0.0 | 408.0 | 131.5 | | | | | | | | | | | Silver | | 552.7 | | 0.0 | 552.7 | | |----------|---------|--------|-------|-----|---------|---------| | Thallium | | | 271.8 | | 271.8 | | | Zinc | | 6707.1 | | | 6707.1 | 13110.2 | | Boron | 32359.6 | | | | 32359.6 | | #### Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL] [If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.] | ¥ | WLA Acute
ug/l | WLA Chronic
ug/l | | |----------------|-------------------|---------------------|------------------------------------| | Aluminum | 16504.5 | N/A | | | Antimony | 185528.18 | | | | Arsenic | 4314.6 | 8164.3 | Acute Controls | | Asbestos | 0.00E+00 | | | | Barium | | | | | Beryllium | | | | | Cadmium | 142.2 | 23.0 | | | Chromium (III) | 9 7 848.7 | 9110 | | | Chromium (VI) | 269.4 | 307.1 | Acute Controls | | Copper | 853.2 | 995.6 | Acute Controls | | Cyanide | 485.6 | 224.4 | | | Iron | 22046.7 | | | | Lead | 4281.1 | 522.3 | | | Mercury | 6.472 | 0.518 | | | Nickel | 26215.7 | 5667 | | | Selenium | 408.0 | 131.5 | | | Silver | 552.7 | N/A | | | Thallium | 271.8 | | | | Zinc | 6707.1 | 13110.2 | Acute Controls | | Boron | 32359.57 | | | Other Effluent Limitations are based upon R317-1. E. coli 126.0 organisms per 100 ml #### X. Antidegradation Considerations The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses. The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources. An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II review is NOT required. #### XI. Colorado River Salinity Forum Considerations Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value. #### XII. Summary Comments The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met. ### XIII. Notice of UPDES Requirement This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. #### XIV. Special Considerations - TMDL The Richmond Lagoons discharge to a segment of the Cub River that is 303(d) listed for total phosphorous (TP). A TP Total Maximum Daily Load (TMDL) was completed for the Cub River on December 23, 1997. The TMDL indicated that the lagoons were contributing a TP load of approximately 2.3 kg/d, and recommended a load reduction to .23 kg/d TP. The city is currently constructing a membrane bioreactor wastewater plant to achieve these more stringent phosphorous limits When construction is completed, the current permit will be reopened to include TP limits. Additionally, the Cutler Reservoir and Cub River TMDLs are currently scheduled for revision by 2014. Prepared by: David Wham Utah Division of Water Quality 801-538-6052 File Name: Richmond _ WLA 7-2-13 #### **APPENDIX - Coefficients and Other Model Information** | CBOD | CBOD | CBOD | REAER. | REAER. | REAER. | NBOD | NBOD | |--------|--------|--------|--------|--------|--------|--------|--------| | Coeff. | (Kd)20 | FORCED | (Ka)T | (Ka)20 | FORCED | (Ka)T | (Kn)20 | (Kn)T | |--|---|---|--------------------------------|---|------------------------------------|--|------------------------------------| | 1/day | (Kd)/day | 1/day | (Ka)/day | 1/day | 1/day | 1/day | 1/day | | 2.000 | 0.000 | 2.000 | 13.890 | 0.000 | 13.890 | 0.400 | 0.400 | | Open
Coeff.
(K4)20
1/day
0.000 | Open
Coeff.
(K4)T
1/day
0.000 | NH3
LOSS
(K5)20
1/day
4.000 | NH3
(K5)T
1/day
4.000 | NO2+NO3
LOSS
(K6)20
1/day
0.000 | NO2+NO3
(K6)T
1/day
0.000 | TRC
Decay
K(CI)20
1/day
32.000 | TRC
K(CI)(T)
1/day
32.000 | | BENTHIC
DEMAND
(SOD)20
gm/m2/day
1.000 | BENTHIC
DEMAND
(SOD)T
gm/m2/day
1.000 | | | | | | | | K1 | K2 | K3 | K4 | K5 | K6 | K(CI) | S | | CBOD | Reaer. | NH3 | Open | NH3 Loss | NO2+3 | TRC | Benthic | | {theta} | 1.0 | 1.0 | 1.1 | 1.0 | 1.0 | 1.0 | 1.1 | 1.1 |